Workflow

  1. Loading libraries and data
  • Loading necessary libraries
  • Loading necessary data sources
  1. Estimation of the number of bi-clusters
  • Seriation of normalized data
  • Estimation of the number of bi-clusters
  1. Applying iBBiG on normalized data
  • Calculation of top league bi-cluster
  • Calculation of F-tests of the top league bi-cluster
  • Heat maps of the top league
  • Checking stability of the top league bi-cluster
  • Calculation of partial rankings
  • Comparison of partial rankings to the adequate part of the original ranking
  • Venn diagrams of U21’s League A and the League A of the extended database
  1. Applying iBBiG on reversed normalized data
  • Calculation of lower league bi-cluster
  • Calculation of F-tests of the lower league bi-cluster
  • Heat maps of the lower league
  • Checking stability of the lower league bi-cluster
  • Calculation of partial rankings
  • Comparison of partial rankings to the adequate part of the original ranking
  • Venn diagrams of U21’s League C and the League C of the extended database
  1. Applying BicARE
  • Calculation of middle league bi-cluster
  • Calculation of F-tests of the middle league bi-cluster
  • Heat maps of the middle league
  • Checking stability of the middle league bi-cluster
  • Calculation of partial rankings
  • Comparison of partial rankings to the adequate part of the original ranking
  • Venn diagrams of U21’s League B and the League B of the extended database
  1. Specifying overlaps
  • Venn diagrams of indicators
  • Venn diagrams of countries
  1. Summing up the conclusions

Loading libraries and data

Loading necessary libraries

#Seriation and biclustering
library(seriation) #For seriate a matrix
library(biclust) #General biclustering functions
library(iBBiG) #iBBiG biclustering
library(BicARE) #BicARE biclustering
library(BcDiag) #Diagnostics of biclusters

#Additional statistic packages
library(factoextra) #Additional distance functions
library(VennDiagram) #VennDiagram
library(venneuler) #VennDiagram

#For formatted and interactive tables and figures
library(knitr) #Formatted tables, figures

Citations

#Seriation and biclustering
print(citation("seriation"),style="text") #For seriate a matrix
## Hahsler M, Buchta C, Hornik K (2018). _seriation: Infrastructure
## for Ordering Objects Using Seriation_. R package version 1.2-3,
## <URL: https://CRAN.R-project.org/package=seriation>.
## 
## Hahsler M, Hornik K, Buchta C (2008). "Getting things in order: An
## introduction to the R package seriation." _Journal of Statistical
## Software_, *25*(3), 1-34. ISSN 1548-7660, <URL:
## http://www.jstatsoft.org/v25/i03/>.
print(citation("biclust"),style="text") #General biclustering functions
## Kaiser S, Santamaria R, Khamiakova T, Sill M, Theron R, Quintales
## L, Leisch F, De Troyer. E (2018). _biclust: BiCluster Algorithms_.
## R package version 2.0.1, <URL:
## https://CRAN.R-project.org/package=biclust>.
print(citation("iBBiG"),style="text") #iBBiG biclustering
## Gusenleitner D, Culhane A (2011). _iBBiG: Iterative Binary
## Biclustering of Genesets_. R package version 1.24.0, <URL:
## http://bcb.dfci.harvard.edu/~aedin/publications/>.
print(citation("BicARE"),style="text") #BicARE biclustering
## Gestraud P (2008). _BicARE: Biclustering Analysis and Results
## Exploration_. R package version 1.38.0, <URL:
## http://bioinfo.curie.fr>.
print(citation("BcDiag"),style="text") #Diagnostics of biclusters
## Mengsteab A, Otava M, Khamiakova T, De Troyer E (2015). _BcDiag:
## Diagnostics Plots for Bicluster Data_. R package version 1.0.10,
## <URL: https://CRAN.R-project.org/package=BcDiag>.
#Additional statistic packages
print(citation("factoextra"),style="text") #Additional distance functions
## Kassambara A, Mundt F (2017). _factoextra: Extract and Visualize
## the Results of Multivariate Data Analyses_. R package version
## 1.0.5, <URL: https://CRAN.R-project.org/package=factoextra>.
print(citation("VennDiagram"),style="text") #VennDiagram
## Chen H (2018). _VennDiagram: Generate High-Resolution Venn and
## Euler Plots_. R package version 1.6.20, <URL:
## https://CRAN.R-project.org/package=VennDiagram>.
print(citation("venneuler"),style="text") #VennDiagram
## Wilkinson L (2011). _venneuler: Venn and Euler Diagrams_. R
## package version 1.1-0, <URL:
## https://CRAN.R-project.org/package=venneuler>.
#For formatted and interactive tables and figures
print(citation("knitr"),style="text") #Formatted tables, figures
## Xie Y (2018). _knitr: A General-Purpose Package for Dynamic Report
## Generation in R_. R package version 1.20, <URL:
## https://yihui.name/knitr/>.
## 
## Xie Y (2015). _Dynamic Documents with R and knitr_, 2nd edition.
## Chapman and Hall/CRC, Boca Raton, Florida. ISBN 978-1498716963,
## <URL: https://yihui.name/knitr/>.
## 
## Xie Y (2014). "knitr: A Comprehensive Tool for Reproducible
## Research in R." In Stodden V, Leisch F, Peng RD (eds.),
## _Implementing Reproducible Computational Research_. Chapman and
## Hall/CRC. ISBN 978-1466561595, <URL:
## http://www.crcpress.com/product/isbn/9781466561595>.

Loading necessary data

In the case of this analysis an extended database is used. The extended database contains data from the U21 ranking (R1-5, E1-4, C1-6, O1-9), the Global Competitiveness Index (GCI) and the indicators of its two pillars related to higher education and R&D and GDP from World Bank. New indicators are the following:

5th pillar of the GCI (Higher education and training):

  • GCI_64: Secondary education enrollment, gross %
  • GCI_65: Tertiary education enrollment, gross %
  • GCI_66: Quantity of education
  • GCI_67: Quality of education system (from 1 to 7, where 7 is the best)
  • GCI_68: Quality of Math and Science education (from 1 to 7, where 7 is the best)
  • GCI_69: Quality of Management schools (from 1 to 7, where 7 is the best)
  • GCI_70: Internet access in schools (from 1 to 7, where 7 is the best)
  • GCI_71: Quality of education
  • GCI_72: Availability of research and training services (from 1 to 7, where 7 is the best)
  • GCI_73: Extent to staff training (from 1 to 7, where 7 is the best)
  • GCI_74: On-the-job training
  • GCI_75: Higher education and training

12th pillar of the GCI (Innovation):

  • GCI_149: Capacity for innovation (from 1 to 7, where 7 is the best)
  • GCI_150: Quality of scientific research institutions (from 1 to 7, where 7 is the best)
  • GCI_151: Company spending on R&D (from 1 to 7, where 7 is the best)
  • GCI_152: University-industry collaboration in R&D (from 1 to 7, where 7 is the best)
  • GCI_153: Governmental procurement of advanced tech products (from 1 to 7, where 7 is the best)
  • GCI_154: Availability of scientists and engineers (from 1 to 7, where 7 is the best)
  • GCI_155: PCT patents, application/million population
  • GCI_156: Innovation

Overall GCI:

  • GCI_158: Global Competitiveness Index

World Bank/World Development Indicators/GDP:

  • WB_WDI_223: GDP per capita, PPP (constant 2011 international $)
load("U21_AND_MORE_BIC.RData")
#ALL: 50 by 24 dataframe of normalized data, with two letters indicator names
#U21: 50 by 24 dataframe of normalized data, with original indicator names
#LESS_NORM: 50 by 46 dataframe of normalized U21 and Global Competitive Index indicators for 50 countries
#LESS_ORIG: 50 by 46 dataframe of original U21 and Global Competitive Index indicators for 50 countries
#orig_mtx: 50 by 46 matrix of original U21 and Global Competitive Index indicators for 50 countries
#orig_mtx_u21: 50 by 24 matrix of original U21 indicators for 50 countries
#mtx: 50 by 46 matrix of normalized U21 and Global Competitive Index indicators for 50 countries
#mtx_u21: 50 by 34 matrix of normalized U21 indicators for 50 countries
#U21_rank: 50 by 1 matrix (vector) of U21'S country ranks
#weights: 1 by 46 matrix (vector) of equally weights (in this case all weights are 1/46)

Estimation of the number of bi-clusters

Seriation of normalized data

Firstly, to obtain a preliminary picture of the possible bi-clusters, seriation of the normalized data is done.

ALL_SER <- c(seriate(dist(mtx,"euclidean"),method="MDS"),seriate(get_dist(t(mtx),"spearman"),method="MDS"))
ALL_ORDERED<-mtx[get_order(ALL_SER,dim=1),get_order(ALL_SER,dim=2)]
rownames(ALL_ORDERED) <- rownames(mtx[get_order(ALL_SER,dim=1),get_order(ALL_SER,dim=2)])

Estimating the number of bi-clusters

After seriation, plotting the heat map of the normalized data (see Fig. 1) can help to detect the possible bi-clusters. On Fig. 1 the blue cells indicate lower values of the indicators, while red cells mean higher values.

hmap(as.matrix(ALL_ORDERED),col=bluered(100),showdist="both")
**Fig. 1** Heat map of the normalized and seriated matrix

Fig. 1 Heat map of the normalized and seriated matrix

After seriation, two-two bigger homogeneous blocks can be identified based on Fig. 1. Two blocks of the red cells on the top left corner on Fig. 1 indicates the top leagues, while the two bigger blue blocks, which indicates the remaining (lower) leagues, can be discovered in the bottom of the figure. The dendrogram of two-way clustering also shows that regarding rows and columns two-two main blocks can be specified.

Applying iBBiG on normalized data

Applying the iBBiG method on the normalized data can specify the top league bi-clusters. First of all, the number of bi-clusters needed to be determined.

res <- iBBiG(binaryMatrix=binarize(mtx,threshold = NA),nModules = 2,alpha=0.3,pop_size = 100,mutation = 0.08,stagnation = 50,selection_pressure = 1.2,max_sp = 15,success_ratio = 0.6)
## [1] "Threshold:  0.5"
## Module:  1 ... done
## Module:  2 ... done
summary(res)
## 
## An object of class iBBiG 
## 
## Number of Clusters found:  2 
## 
## First  2  Cluster scores and sizes:
##                         M 1      M 2
## Cluster Score      524.6154 89.85694
## Number of Rows:     24.0000 25.00000
## Number of Columns:  36.0000  7.00000

The results above show that the iBBiG algorithm found 2 bi-clusters. In the first bi-cluster there are 24 rows (countries) and 36 columns (indicators), in the second bi-cluster there are 25 rows (countries) and 7 columns (indicators). The next step is to calculate F-tests to determine which bi-cluster is significant.

Obs.FStat <- NULL
for (i in c(1:res@Number)){
  Obs.FStat[[i]] <- computeObservedFstat(x=mtx,bicResult=res,number=i)
}
kable(Obs.FStat,caption = "**Table 1** The results of row and column effects for two bi-clusters")
Table 1 The results of row and column effects for two bi-clusters
Fstat PValue
Row Effect 10.6683765 0.000000
Column Effect 9.7110185 0.000000
Tukey test 0.3925975 0.531115
Fstat PValue
Row Effect 1.813104 0.0174211
Column Effect 18.113715 0.0000000
Tukey test 0.622469 0.4314374

In Table 1 the results of the F-tests can be seen. In the case of the first bi-cluster, both the row and column effect are significant. On the other hand, in the case of the second bi-cluster the row effect is not significant at p = 0.01 level; thus the second bi-cluster is not significant. Only the first bi-cluster is significant which is the top league (League A).

Calculating top league bi-cluster

The next step is to identify the top league bi-cluster.

res <- iBBiG(binaryMatrix=binarize(mtx,threshold = 0.50),nModules = 1,alpha=0.3,pop_size = 100,mutation = 0.08,stagnation = 50,selection_pressure = 1.2,max_sp = 15,success_ratio = 0.8)
## Module:  1 ... done
summary(res)
## 
## An object of class iBBiG 
## 
## There was one cluster found with Score 524.6154 and 
##   24 Rows and  36 columns

The results of the iBBiG algorithm can be seen above. The algorithm found one bi-cluster in which there are 24 rows (countries) and 36 columns (indicators). The following step is to calculate the F-tests to determine whether the bi-cluster is significant or not.

Calculating F-tests of the top league bi-cluster

In Table 2 the results of the row and column effects (F-tests) can be read. Both the row and column effects are significant, so the top league bi-cluster is significant.

Obs.FStat <- NULL
for (i in c(1:res@Number)){
  Obs.FStat[[i]] <- computeObservedFstat(x=mtx,bicResult=res,number=i)
}
kable(Obs.FStat,caption = "**Table 2** The results of row and column effects for the top league")
Table 2 The results of row and column effects for the top league
Fstat PValue
Row Effect 10.6683765 0.000000
Column Effect 9.7110185 0.000000
Tukey test 0.3925975 0.531115

To see the differences between those countries that are included in the top league and those that are not in the top league, one can plot the means, medians, variances, and median absolute deviations (MAD) for rows (countries) (see Fig. 2). (The horizontal axis of Fig. 2 shows the countries, and the vertical axis depicts the mentioned parameters on normalized (0-1) data of indicators.) On Fig. 2 the red line indicates those countries that are included in the top league, while the black line shows the remaining countries. The countries in the top league have higher means and medians.

exploreBic(dset=mtx,bres=res,mname='biclust',pfor='all',gby='genes',bnum=1)
**Fig. 2** Mean, median, variance and MAD for the top league countries

Fig. 2 Mean, median, variance and MAD for the top league countries

One can do the same for the columns (indicators). Fig. 3 shows the differences between the means, medians, variances, and median absolute deviations (MAD) for the indicators. (The horizontal axis of Fig. 3 shows the indicators, and the vertical axis depicts the mentioned parameters on normalized (0-1) data of countries.) The red line indicates those indicators that are in the top league, while the black line shows the remaining indicators.

exploreBic(dset=mtx,bres=res,mname='biclust',pfor='all',gby='conditions',bnum=1)
**Fig. 3** Mean, median, variance and MAD for the top league indicators

Fig. 3 Mean, median, variance and MAD for the top league indicators

Heat maps of the top league

Fig. 4 depicts the heat map of the top league. The top league contains 24 countries and 36 indicators. The red cells mean higher values in the case of indicators, while blue cells symbol lower values.

drawHeatmap(x=mtx,bicResult=res,number=1,beamercolor = TRUE,paleta=bluered(100))
**Fig. 4** Heat map of the top league

Fig. 4 Heat map of the top league

Fig. 5 shows the heat map of the results of iBBiG on normalized data. The top league can be seen in the upper left corner of Fig.5, which is enlarged on Fig.4.

drawHeatmap(x=mtx,bicResult=res,local=FALSE,number=1,beamercolor = TRUE,paleta=bluered(100))
**Fig. 5** Heat map of the output after applying iBBiG on normalized data

Fig. 5 Heat map of the output after applying iBBiG on normalized data

Checking stability of the top league bi-cluster

The next step is to check the stability of the top league bi-cluster. The results of the bootstrap can be seen below.

Bootstrap <- diagnoseColRow(x=mtx,bicResult=res,number=1,
  nResamplings=100,replace=TRUE)
Bootstrap
## $bootstrapFstats
##         fval.row  fval.col
##   [1,] 0.4558573 1.2457839
##   [2,] 0.7762345 0.7598299
##   [3,] 0.8820925 1.2526881
##   [4,] 0.6692145 0.6348535
##   [5,] 0.9052724 1.0013984
##   [6,] 1.1753236 0.8978720
##   [7,] 1.0272293 0.7682869
##   [8,] 0.9653420 1.4250487
##   [9,] 1.2893017 1.3926588
##  [10,] 1.1110981 1.6054483
##  [11,] 0.9458103 0.9886969
##  [12,] 0.8346419 0.8635576
##  [13,] 1.1191162 0.9559220
##  [14,] 0.6836625 1.2205601
##  [15,] 1.0312550 1.0788385
##  [16,] 0.9493767 1.1851422
##  [17,] 0.7678664 0.7791395
##  [18,] 1.1122661 1.3074732
##  [19,] 0.6424177 0.9130398
##  [20,] 1.3827550 0.7626709
##  [21,] 1.1457097 0.8648573
##  [22,] 1.3361727 1.2474525
##  [23,] 1.1112548 0.5710432
##  [24,] 1.1390997 0.6208631
##  [25,] 1.1138205 1.1016886
##  [26,] 0.6206800 0.9748964
##  [27,] 1.5427918 0.6365833
##  [28,] 1.1807683 1.1337138
##  [29,] 1.1469962 1.2715420
##  [30,] 1.0504918 1.3011868
##  [31,] 1.4030936 1.2870953
##  [32,] 1.2225875 0.8520711
##  [33,] 0.8377245 1.2852197
##  [34,] 0.8244972 1.1141902
##  [35,] 1.4580365 1.2429602
##  [36,] 1.0191745 1.3459453
##  [37,] 0.6079635 0.8073483
##  [38,] 0.6027129 0.8911671
##  [39,] 1.1186381 0.7813470
##  [40,] 0.8440753 1.2352131
##  [41,] 0.9991487 0.9056138
##  [42,] 0.7488974 1.0719661
##  [43,] 1.2087327 0.8868491
##  [44,] 0.7187704 1.3342927
##  [45,] 1.3792451 1.0448297
##  [46,] 1.2232797 0.9134026
##  [47,] 0.9807438 1.2319932
##  [48,] 1.0937240 0.7643169
##  [49,] 1.0069267 0.8439561
##  [50,] 1.0554553 0.7672389
##  [51,] 0.3991724 0.7518581
##  [52,] 0.3975236 0.5158957
##  [53,] 1.1472599 1.0219702
##  [54,] 0.9002998 0.7226747
##  [55,] 1.5158563 0.7355529
##  [56,] 1.1911368 0.7386849
##  [57,] 0.8558949 0.7115147
##  [58,] 0.9025096 1.4479635
##  [59,] 1.5137745 1.0294836
##  [60,] 1.5480152 1.2708263
##  [61,] 0.8614656 0.8841339
##  [62,] 1.2848611 1.1394600
##  [63,] 1.0059435 0.9341937
##  [64,] 0.6423531 0.9372097
##  [65,] 1.0677445 0.7347199
##  [66,] 1.1592102 0.8873006
##  [67,] 0.8702847 1.1062927
##  [68,] 0.6011507 0.8901371
##  [69,] 0.8682281 1.2872815
##  [70,] 0.9228611 1.2186835
##  [71,] 1.0301156 0.6209046
##  [72,] 0.5282748 0.7284243
##  [73,] 1.2344511 1.1267588
##  [74,] 0.8141651 0.9895322
##  [75,] 0.5924007 0.8045624
##  [76,] 1.0001861 1.1210527
##  [77,] 1.1179881 0.8128473
##  [78,] 0.8513709 0.6978781
##  [79,] 1.1746256 0.7061067
##  [80,] 1.0393032 0.9121229
##  [81,] 1.1141229 1.0538603
##  [82,] 1.4043178 0.9318470
##  [83,] 0.8170598 0.7481587
##  [84,] 0.9658959 0.8928029
##  [85,] 1.4394232 0.5875308
##  [86,] 0.8082113 0.8927686
##  [87,] 1.3945176 0.7694480
##  [88,] 1.0719340 1.4111355
##  [89,] 1.4402063 0.8448667
##  [90,] 0.6760628 0.8433685
##  [91,] 1.0152765 1.3606787
##  [92,] 1.0978468 1.0129742
##  [93,] 0.9068615 1.4025693
##  [94,] 1.4808052 1.2251358
##  [95,] 1.1234761 0.9579472
##  [96,] 0.8776120 0.8975560
##  [97,] 0.8126690 0.9773330
##  [98,] 1.9600443 1.5367003
##  [99,] 1.2707879 1.5715004
## [100,] 0.9669200 0.8821530
## 
## $observedFstatRow
## [1] 10.66838
## 
## $observedFstatCol
## [1] 9.711019
## 
## $bootstrapPvalueRow
## [1] 0
## 
## $bootstrapPvalueCol
## [1] 0

Since the bootstrapPvalueRow and the bootstrapPvalueCol are lower than 0.01, the bi-cluster is stable.

Calculating partial rankings

The next step is to calculate partial rankings based on the indicators and countries in the top league. The calculation of each score of each indicator of the countries are done according to the method used in the original U21 ranking. The original weights of U21’s indicators are used, and the total scores for the countries are calculated using the selected indicators in the given bi-cluster. Table 3 shows the result of partial ranking in the case of the top league.

C<-biclust::bicluster(orig_mtx,res,number=1)
B<-as.data.frame(C[[1]])
selectedweight<-weights[,colnames(B)]
B$Overall_Score<-rowSums(B*selectedweight)*100/max(rowSums(B*selectedweight))
B$Rank<-rank(-B$Overall_Score)
kable(B,caption = "**Table 3** League A by iBBiG",digits = 2)
Table 3 League A by iBBiG
R3 R4 R5 E1 E2 E3 E4 C2 C5 C6 O2 O3 O6 O7 O8 GCI_64_VALUE_Secondary_education_enrollment,gross%* (a nagyobb jobb) GCI_65_VALUE_Tertiary_education_enrollment,gross%* (a nagyobb jobb) GCI_66_VALUE_A._Quantity_of_education (a nagyobb jobb) GCI_67_VALUE_Quality_of_the_education_system,1-7(best) GCI_68_VALUE_Quality_of_math_and_science_education,1-7(best) GCI_69_VALUE_Quality_of_management_schools,1-7(best) GCI_70_VALUE_Internet_access_in_schools,1-7(best) GCI_71_VALUE_B._Quality_of_education (a nagyobb jobb) GCI_72_VALUE_Availability_of_research_and_training_services,1-7(best) GCI_73_VALUE_Extent_of_staff_training,1-7(best) GCI_74_VALUE_C._On-the-job_training (a nagyobb jobb) GCI_75_VALUE_5th_pillar:_Higher_education_and_training (a nagyobb jobb) GCI_149_VALUE_Capacity_for_innovation,1-7(best) GCI_150_VALUE_Quality_of_scientific_research_institutions,1-7(best) GCI_151_VALUE_Company_spending_on_R&D,1-7(best) GCI_152_VALUE_University-industry_collaboration_in_R&D,1-7(best) GCI_153_VALUE_Gov’t_procurement_of_advanced_tech_products,1-7(best) GCI_154_VALUE_Availability_of_scientists_and_engineers,1-7(best) GCI_156_VALUE_12th_pillar:_Innovation (a nagyobb jobb) GCI_158_VALUE_Global_Competitiveness_Index (a nagyobb jobb) WB_WDI_223_GDP_per_capita,PPP(constant_2011_international_$)_[NY.GDP.PCAP.PP.KD] Overall_Score Rank
Australia 59.2 59.4 63.8 100.0 84.0 95.5 93.2 67.30 73.10 44.20 95.50 79.30 82.60 71.70 55.20 135.54 86.33 7.00 4.80 4.61 5.05 6.16 5.16 5.21 4.52 4.87 5.67 4.61 5.78 3.57 4.84 3.42 4.72 4.41 5.08 43395.57 54.83 11
Austria 58.7 72.9 79.8 100.0 77.9 100.0 85.1 88.30 67.20 84.10 62.60 78.00 70.40 36.20 59.40 97.69 72.44 6.48 4.49 4.61 4.63 5.58 4.83 5.93 4.82 5.37 5.56 4.96 5.01 4.80 4.68 3.66 4.27 4.82 5.16 44122.65 55.66 10
Belgium 59.3 47.8 47.6 100.0 91.2 100.0 94.6 91.00 74.10 63.00 66.00 85.60 68.70 64.70 49.50 107.26 70.83 6.42 5.33 6.01 6.01 5.87 5.81 6.00 5.11 5.56 5.93 5.16 6.08 4.84 5.58 3.51 4.47 4.89 5.18 41355.16 52.27 14
Canada 87.9 64.5 70.5 100.0 84.0 88.6 77.7 69.10 85.60 64.50 84.10 81.60 94.60 96.00 58.10 103.40 58.88 5.93 5.25 5.10 5.77 6.25 5.59 5.29 4.70 4.99 5.50 4.63 5.47 3.93 4.90 3.69 5.06 4.54 5.24 42946.36 54.32 13
Denmark 74.2 100.0 100.0 100.0 84.0 95.5 75.7 89.25 89.15 96.25 92.45 92.45 72.95 62.95 91.05 124.66 79.60 6.78 4.81 4.54 5.21 5.96 5.13 5.32 4.94 5.13 5.68 5.28 5.38 4.79 4.90 3.35 4.57 5.06 5.29 45082.15 57.11 8
Finland 65.4 78.7 74.6 100.0 100.0 100.0 92.6 77.20 87.80 79.40 90.90 77.80 94.80 73.50 100.00 107.68 93.72 7.00 5.86 6.26 5.58 6.47 6.04 5.90 5.32 5.61 6.22 5.59 5.72 5.68 5.97 4.07 6.25 5.78 5.50 39017.54 49.68 15
France 58.9 49.3 46.0 100.0 84.0 95.5 87.2 78.40 67.50 44.90 51.90 73.80 56.60 55.70 51.30 109.71 58.30 5.90 4.38 5.19 5.73 4.71 5.00 5.29 4.47 4.88 5.26 4.77 5.56 4.71 4.58 3.75 4.83 4.74 5.08 37531.43 47.44 17
Germany 62.2 54.1 54.2 100.0 78.6 97.7 77.0 70.50 86.80 61.30 50.20 80.40 56.10 51.50 54.30 101.27 61.65 6.04 5.24 5.09 4.98 5.05 5.09 6.03 5.02 5.52 5.55 5.60 5.78 5.46 5.34 4.19 4.92 5.47 5.49 43417.73 54.69 12
Hong Kong 73.6 37.3 48.2 100.0 84.0 90.9 97.3 99.80 79.40 38.60 76.80 78.70 59.40 32.20 39.00 88.65 59.67 5.89 4.75 5.42 5.41 6.05 5.41 5.42 4.63 5.02 5.44 4.50 4.75 3.93 4.59 3.97 4.48 4.38 5.46 52700.52 66.02 4
Ireland 62.6 47.7 52.1 100.0 75.3 100.0 85.8 81.80 81.00 52.90 70.70 77.50 72.90 70.50 45.70 119.12 71.24 6.43 5.43 5.01 5.32 5.35 5.28 5.03 4.78 4.90 5.54 5.02 5.50 4.58 5.24 3.53 4.95 4.68 4.98 48885.62 61.45 6
Israel 42.0 53.3 42.6 100.0 84.0 90.9 85.8 70.20 100.00 50.10 72.90 71.40 61.90 86.80 16.30 101.70 65.85 6.21 3.72 3.95 4.86 5.48 4.50 4.61 3.95 4.28 5.00 5.82 6.27 5.31 5.50 4.34 5.20 5.56 4.95 31812.63 40.48 21
Japan 62.6 39.1 37.3 92.0 35.8 100.0 92.6 36.50 66.80 80.20 37.90 54.10 59.40 86.80 69.70 101.81 61.46 6.03 4.43 5.09 4.23 5.33 4.77 5.64 5.41 5.53 5.44 5.38 5.81 5.83 5.00 4.09 5.44 5.54 5.47 37322.85 47.13 18
Korea, Rep. (South) 39.0 37.2 30.3 79.3 68.2 100.0 78.4 39.20 64.20 76.90 44.10 55.50 100.00 75.60 71.60 97.20 98.38 7.00 3.62 4.70 4.21 6.25 4.69 4.67 4.22 4.44 5.38 4.70 4.98 4.50 4.62 4.14 4.42 4.83 4.96 33425.69 42.40 20
Malaysia 49.7 31.7 12.9 100.0 99.8 95.5 80.4 44.80 81.20 2.70 14.90 41.50 36.80 34.00 21.80 67.24 35.97 3.74 5.26 5.20 5.13 5.41 5.25 5.44 5.35 5.40 4.80 5.19 5.21 4.93 5.33 5.18 5.22 4.67 5.16 24195.90 30.75 24
Netherlands 67.1 75.8 85.3 100.0 79.1 100.0 100.0 76.60 85.20 89.50 88.40 98.30 75.80 59.90 43.40 129.91 77.34 6.69 5.30 5.44 5.70 6.38 5.70 6.13 5.03 5.58 5.99 5.23 5.87 4.65 5.38 4.00 4.62 5.25 5.45 45668.44 57.73 7
New Zealand 40.7 43.2 32.9 100.0 100.0 100.0 95.9 79.60 62.60 50.20 74.50 75.70 80.10 73.50 50.70 119.54 79.78 6.79 5.32 5.33 5.18 6.01 5.46 4.91 4.93 4.92 5.72 5.07 5.26 3.81 4.91 3.45 4.44 4.42 5.20 34468.77 43.81 19
Norway 72.4 59.0 83.1 100.0 84.0 95.5 86.5 80.80 79.40 76.20 75.30 79.30 72.50 71.20 73.30 111.06 74.10 6.55 5.05 4.55 5.26 6.52 5.34 5.52 5.16 5.34 5.75 5.02 5.20 4.49 5.02 4.20 4.51 4.85 5.35 63286.69 79.20 2
Portugal 41.4 59.4 38.9 100.0 87.5 100.0 85.8 73.40 55.60 38.50 52.70 63.80 65.40 32.30 60.90 112.85 68.86 6.34 4.27 4.54 5.92 5.74 5.12 5.11 4.18 4.64 5.37 4.29 5.38 3.57 4.68 3.77 5.24 4.08 4.54 26023.67 33.33 23
Singapore 93.6 57.3 86.8 98.7 73.3 88.6 91.9 80.80 81.50 47.30 75.20 84.20 52.10 71.30 80.40 107.10 81.30 6.85 5.80 6.32 5.83 6.36 6.08 5.46 5.25 5.36 6.09 4.99 5.61 4.85 5.58 5.10 4.94 5.18 5.65 80305.45 100.00 1
Sweden 76.5 91.4 95.7 100.0 85.9 100.0 88.5 86.90 96.90 100.00 100.00 83.60 73.40 65.80 69.70 98.38 70.03 6.38 4.58 4.42 5.16 6.32 5.12 5.42 5.10 5.26 5.59 5.50 5.48 5.36 5.33 4.02 4.88 5.37 5.41 44167.63 55.95 9
Switzerland 85.6 71.6 84.3 98.5 74.1 97.7 77.0 100.00 98.30 60.50 93.40 100.00 53.90 65.80 42.60 96.31 55.56 5.79 5.99 5.94 6.16 6.10 6.05 6.50 5.69 6.09 5.98 5.89 6.35 5.94 5.79 3.95 4.77 5.70 5.70 56680.44 71.11 3
Taiwan 50.4 14.4 14.4 97.8 67.2 88.6 89.2 28.90 80.70 36.20 65.00 56.20 64.50 74.60 61.40 100.25 83.88 6.95 3.91 5.27 4.81 6.11 5.02 5.44 4.35 4.90 5.63 4.75 5.17 4.63 5.09 4.05 4.99 5.10 5.25 31579.77 40.05 22
United Kingdom 62.0 45.7 44.6 100.0 87.0 100.0 85.8 76.20 83.00 64.60 79.20 91.90 60.70 73.70 56.30 95.42 61.88 6.05 4.63 4.29 5.83 6.35 5.27 5.67 4.67 5.17 5.50 5.27 6.35 4.78 5.67 3.70 4.79 4.96 5.41 37983.13 48.12 16
United States 100.0 41.6 53.3 100.0 95.4 100.0 95.9 48.30 95.10 62.60 63.20 95.40 94.60 79.40 61.00 93.67 94.28 7.00 4.56 4.39 5.58 6.06 5.15 5.64 5.00 5.32 5.82 5.88 6.11 5.49 5.85 4.35 5.32 5.49 5.54 51830.99 65.20 5

Comparing partial rankings to the adequate part of the original ranking

The final step is to compare the results of the partial rankings to the corresponding part of the original U21 ranking. The results of the Spearman’s rank correlation show a moderate positive relationship between the two rankings.

cor(B$Rank,U21_rank[rownames(B),],method="spearman")
## [1] 0.6608696
cor.test(B$Rank,U21_rank[rownames(B),],method="spearman")
## 
##  Spearman's rank correlation rho
## 
## data:  B$Rank and U21_rank[rownames(B), ]
## S = 780, p-value = 0.0005987
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.6608696

Venn diagram of U21’s League A and the League A of the extended database

An interesting question is how the League A of the U21 and the League A of the extended database (U21 + GCI + GDP) are overlap. In order to answer this question, one can make a Venn diagram of the two leagues to detect overlaps. The first step before plotting the Venn diagrams (one for the indicators and one for the countries), is to calculate the top league bi-cluster of the U21 database.

res_U21 <- iBBiG(binaryMatrix=binarize(mtx_u21,threshold = 0.50),nModules = 1,alpha=0.05,pop_size = 100,mutation = 0.08,stagnation = 50,selection_pressure = 1.2,max_sp = 15,success_ratio = 0.8)
## Module:  1 ... done
T<-biclust::bicluster(orig_mtx,res,number = 1)
T_U21<-biclust::bicluster(orig_mtx_u21,res_U21,number = 1)
League_A<-T[[1]]
League_A_U21<-T_U21[[1]]

Fig.6 shows the Venn diagram of the indicators in the two different top leagues. The green circle contains those indicators that are in the U21’s top league (League A) while in the red circle the extended database’s top league’s indicators can be found. 15 indicators are the same in the two top leagues.

draw.pairwise.venn(area1=nrow(as.matrix(colnames(League_A))),area2=nrow(as.matrix(colnames(League_A_U21))),cross.area=nrow(as.matrix(intersect(colnames(League_A),colnames(League_A_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of indicators on League As")
**Fig. 6** Venn diagram of the indicators in the top leagues (original vs. extended database)

Fig. 6 Venn diagram of the indicators in the top leagues (original vs. extended database)

## (polygon[GRID.polygon.13], polygon[GRID.polygon.14], polygon[GRID.polygon.15], polygon[GRID.polygon.16], text[GRID.text.17], text[GRID.text.18], text[GRID.text.19], text[GRID.text.20], text[GRID.text.21])

One can draw a Venn diagram for the countries in the two top leagues. On Fig. 7 the green circle contains those countries that are in the U21’s top league while in the red circle the extended database’s top league’s countries can be found. 21 countries are the same in the two top leagues.

draw.pairwise.venn(area1=nrow(as.matrix(rownames(League_A))),area2=nrow(as.matrix(rownames(League_A_U21))),cross.area=nrow(as.matrix(intersect(rownames(League_A),rownames(League_A_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of countries on League As")
**Fig. 7** Venn diagram of the countries in the top leagues (original vs. extended database)

Fig. 7 Venn diagram of the countries in the top leagues (original vs. extended database)

## (polygon[GRID.polygon.22], polygon[GRID.polygon.23], polygon[GRID.polygon.24], polygon[GRID.polygon.25], text[GRID.text.26], text[GRID.text.27], text[GRID.text.28], text[GRID.text.29], text[GRID.text.30])

Applying iBBiG on reversed normalized data

To identify the lower league(s), the reverse data matrix is needed to be calculated firstly. Applying the iBBiG method on the reversed normalized data can specify the lower league bi-clusters.

rmtx <- 1-mtx
rres <- iBBiG(binaryMatrix=binarize(rmtx,threshold = NA),nModules = 2,alpha=0.3,pop_size = 100,mutation = 0.08,stagnation = 50,selection_pressure = 1.2,max_sp = 15,success_ratio = 0.6)
## [1] "Threshold:  0.5"
## Module:  1 ... done
## Module:  2 ... done
summary(rres)
## 
## An object of class iBBiG 
## 
## Number of Clusters found:  2 
## 
## First  2  Cluster scores and sizes:
##                         M 1      M 2
## Cluster Score      773.3831 91.93064
## Number of Rows:     29.0000 22.00000
## Number of Columns:  39.0000  9.00000

The results above show that the iBBiG algorithm found 2 bi-clusters on the reversed data. In the first bi-cluster there are 29 rows (countries) and 39 columns (indicators), in the second bi-cluster there are 22 rows (countries) and 9 columns (indicators). The next step is to calculate F-tests to determine which bi-cluster is significant.

Obs.FStat <- NULL 
for (i in c(1:rres@Number)){
  Obs.FStat[[i]] <- computeObservedFstat(x=rmtx,bicResult=rres,number=i) 
  } 
kable(Obs.FStat,caption = "**Table 4** The results of row and column effects of the reversed data for two bi-clusters")
Table 4 The results of row and column effects of the reversed data for two bi-clusters
Fstat PValue
Row Effect 10.433743 0.0000000
Column Effect 12.119623 0.0000000
Tukey test 3.542753 0.0600791
Fstat PValue
Row Effect 0.8626132 0.6390350
Column Effect 6.8820820 0.0000001
Tukey test 0.6142747 0.4342930

In Table 4 the results of the F-tests can be seen. In the case of the first bi-cluster, both the row and column effect are significant. On the other hand, in the case of the second bi-cluster the row effect is not significant; thus the second bi-cluster is not significant. Only the first bi-cluster is significant which is the lower league (League C).

Calculating lower league bi-cluster

The next step is to identify the lower league bi-cluster.

## [1] "Threshold:  0.5"
## Module:  1 ... done
## 
## An object of class iBBiG 
## 
## There was one cluster found with Score 773.3831 and 
##   29 Rows and  39 columns

The results of the iBBiG algorithm on the reversed data can be seen above. The algorithm found one bi-cluster in which there are 29 rows (countries) and 39 columns (indicators). The following step is to calculate the F-tests to determine whether the bi-cluster is significant or not.

Calculating F-tests of the lower league bi-cluster

In Table 5 the results of the row and column effects (F-tests) can be read. Both the row and column effects are significant, so the lower league bi-cluster is significant.

Obs.FStat <- NULL 
for (i in c(1:rres@Number)){
  Obs.FStat[[i]] <- computeObservedFstat(x=rmtx,bicResult=rres,number=i) 
  } 
kable(Obs.FStat,caption = "**Table 5** The results of row and column effects of the lower league")
Table 5 The results of row and column effects of the lower league
Fstat PValue
Row Effect 10.433743 0.0000000
Column Effect 12.119623 0.0000000
Tukey test 3.542753 0.0600791

To see the differences between those countries that are included in the lower league and those that are not in the lower league, one can plot the means, medians, variances, and median absolute deviations (MAD) for rows (countries) (see Fig. 8). On Fig. 8 the red line indicates those countries that are included in the lower league, while the black line shows the remaining countries. The countries in the lower league have lower means and medians.

exploreBic(dset=mtx,bres=rres,mname='biclust',pfor='all',gby='genes',bnum=1)
**Fig. 8** Mean, median, variance and MAD for lower league countries

Fig. 8 Mean, median, variance and MAD for lower league countries

One can do the same for the columns (indicators). Fig. 9 shows the differences between the means, medians, variances, and median absolute deviations (MAD) for the indicators. The red line indicates those indicators that are in the lower league, while the black line shows the remaining indicators.

exploreBic(dset=mtx,bres=rres,mname='biclust',pfor='all',gby='conditions',bnum=1)
**Fig. 9** Mean, median, variance and MAD for lower league indicators

Fig. 9 Mean, median, variance and MAD for lower league indicators

Heat maps of the lower league

Fig. 10 depicts the heat map of the lower league. The lower league contains 29 countries and 39 indicators. The red cells mean higher values in the case of indicators, while blue cells symbol lower values.

drawHeatmap(x=mtx,bicResult=rres,number=1,paleta=bluered(100),beamercolor = TRUE)
**Fig. 10** Heat map of the lower league

Fig. 10 Heat map of the lower league

Fig. 11 shows the heat map of the results of iBBiG on reversed normalized data. The lower league can be seen in the upper left corner of Fig. 11, which is enlarged on Fig.10.

drawHeatmap(x=mtx,bicResult=rres,local=FALSE,number=1,paleta=bluered(100),beamercolor = TRUE) 
**Fig. 11** Heat map of the output of after applying iBBiG on reversed normalized data

Fig. 11 Heat map of the output of after applying iBBiG on reversed normalized data

Checking stability of the lower league bi-cluster

The next step is to check the stability of the lower league bi-cluster. The results of the bootstrap can be seen below.

Bootstrap <- diagnoseColRow(x=mtx,bicResult=rres,number=1,
  nResamplings=100,replace=TRUE)
Bootstrap
## $bootstrapFstats
##         fval.row  fval.col
##   [1,] 0.8787951 1.1993345
##   [2,] 1.1479031 0.8119857
##   [3,] 0.9185714 1.3819028
##   [4,] 1.0515971 1.2870996
##   [5,] 0.6711014 1.1869916
##   [6,] 0.7256949 1.3622916
##   [7,] 1.1097199 1.3266477
##   [8,] 1.0173044 1.2075056
##   [9,] 1.2001393 1.0269856
##  [10,] 1.2875160 0.6932334
##  [11,] 0.9397023 0.9578160
##  [12,] 0.9254670 0.9772501
##  [13,] 0.9739202 1.0086570
##  [14,] 0.8057073 1.2884739
##  [15,] 1.5034866 0.9482308
##  [16,] 0.6151914 0.9449776
##  [17,] 1.4159744 0.8233872
##  [18,] 0.6950945 1.0090267
##  [19,] 0.7447388 0.9996370
##  [20,] 0.9293428 0.6893537
##  [21,] 1.1753038 1.1526448
##  [22,] 0.7429555 1.0307952
##  [23,] 0.6219049 0.7573396
##  [24,] 1.0111328 0.9726158
##  [25,] 1.0113143 1.2827577
##  [26,] 1.2316483 0.7151238
##  [27,] 1.2353553 1.0921821
##  [28,] 1.2241078 0.9375155
##  [29,] 0.7286721 0.8996095
##  [30,] 1.2138118 1.0991131
##  [31,] 1.0748515 1.0166719
##  [32,] 0.5032830 0.9733850
##  [33,] 1.0445495 1.0934007
##  [34,] 1.2926866 1.0033226
##  [35,] 1.1000232 1.0031260
##  [36,] 1.0071052 0.8099202
##  [37,] 1.2508099 0.7534137
##  [38,] 0.9551263 1.2858541
##  [39,] 0.3465532 0.8366278
##  [40,] 0.7751429 0.9808323
##  [41,] 0.8573466 1.3089716
##  [42,] 0.9404418 0.8184324
##  [43,] 0.7119250 1.3058550
##  [44,] 1.0064976 1.3067592
##  [45,] 0.7907035 0.9199236
##  [46,] 0.9281528 1.0198737
##  [47,] 0.6669084 0.7307468
##  [48,] 0.9660137 0.9953439
##  [49,] 1.0873105 0.7482719
##  [50,] 0.8220739 0.6219358
##  [51,] 0.8944025 1.1141820
##  [52,] 1.1483426 1.0547553
##  [53,] 0.8639051 1.0415858
##  [54,] 1.0156392 1.0290273
##  [55,] 0.7594707 0.8070350
##  [56,] 1.0063043 1.1970833
##  [57,] 0.9496060 1.1385846
##  [58,] 0.9643459 0.7935547
##  [59,] 0.6304430 1.0704103
##  [60,] 0.8211591 0.8507563
##  [61,] 0.8714773 1.1699452
##  [62,] 1.2386100 1.4304289
##  [63,] 0.7784997 0.9700217
##  [64,] 0.8695585 1.5800689
##  [65,] 1.1858165 0.8027987
##  [66,] 1.1088257 1.2027392
##  [67,] 1.6205025 1.0034114
##  [68,] 0.7371161 1.0834809
##  [69,] 0.9777323 1.3261343
##  [70,] 1.0243051 1.0839284
##  [71,] 0.7243905 1.2884683
##  [72,] 0.9842515 0.9378520
##  [73,] 0.5377015 0.9844052
##  [74,] 0.9582576 1.2670905
##  [75,] 0.6990923 0.9718825
##  [76,] 0.6688881 0.9551415
##  [77,] 0.9539975 1.2000477
##  [78,] 1.1018907 0.7914655
##  [79,] 0.6309446 0.8638333
##  [80,] 0.9339823 0.3076932
##  [81,] 1.2841541 1.2029371
##  [82,] 1.3483125 0.9638501
##  [83,] 1.2250632 0.9440469
##  [84,] 0.7596095 1.0701843
##  [85,] 0.9719936 0.7823847
##  [86,] 1.0898750 0.9861345
##  [87,] 1.6464125 0.9385529
##  [88,] 0.9311192 0.7878789
##  [89,] 1.1811276 0.8706689
##  [90,] 1.1635742 0.5973442
##  [91,] 1.1607369 1.3041162
##  [92,] 1.1474227 0.9049634
##  [93,] 1.0795009 0.6811819
##  [94,] 1.0779367 1.0681114
##  [95,] 0.7780336 1.2273647
##  [96,] 1.0265458 1.6387280
##  [97,] 1.2477054 0.9540996
##  [98,] 0.4876795 1.0352828
##  [99,] 1.5877732 1.4472059
## [100,] 0.6446398 0.9540343
## 
## $observedFstatRow
## [1] 10.43374
## 
## $observedFstatCol
## [1] 12.11962
## 
## $bootstrapPvalueRow
## [1] 0
## 
## $bootstrapPvalueCol
## [1] 0

Since the bootstrapPvalueRow and the bootstrapPvalueCol are lower than 0.01, the bi-cluster is stable.

Calculating partial rankings

The next step is to calculate partial rankings based on the indicators and countries in the lower league. The calculation of each score of each indicator of the countries are done according to the method used in the original U21 ranking. The original weights of U21’s indicators are used, and the total scores for the countries are calculated using the selected indicators in the given bi-cluster. Table 6 shows the result of partial ranking in the case of the lower league.

C<-biclust::bicluster(orig_mtx,rres,number=1)
B<-as.data.frame(C[[1]])
selectedweight<-weights[,colnames(B)]
B$Overall_Score<-rowSums(B*selectedweight)*100/max(rowSums(B*selectedweight))
B$Rank<-rank(-B$Overall_Score)
kable(B,caption = "**Table 6** League C by reverse iBBiG",digits = 2)
Table 6 League C by reverse iBBiG
R1 R2 R3 R4 R5 C1 C2 C3 C4 C5 C6 O1 O2 O3 O4 O5 O6 O7 O8 O9 GCI_64_VALUE_Secondary_education_enrollment,gross%* (a nagyobb jobb) GCI_65_VALUE_Tertiary_education_enrollment,gross%* (a nagyobb jobb) GCI_67_VALUE_Quality_of_the_education_system,1-7(best) GCI_69_VALUE_Quality_of_management_schools,1-7(best) GCI_71_VALUE_B._Quality_of_education (a nagyobb jobb) GCI_72_VALUE_Availability_of_research_and_training_services,1-7(best) GCI_73_VALUE_Extent_of_staff_training,1-7(best) GCI_74_VALUE_C._On-the-job_training (a nagyobb jobb) GCI_75_VALUE_5th_pillar:_Higher_education_and_training (a nagyobb jobb) GCI_149_VALUE_Capacity_for_innovation,1-7(best) GCI_150_VALUE_Quality_of_scientific_research_institutions,1-7(best) GCI_151_VALUE_Company_spending_on_R&D,1-7(best) GCI_152_VALUE_University-industry_collaboration_in_R&D,1-7(best) GCI_153_VALUE_Gov’t_procurement_of_advanced_tech_products,1-7(best) GCI_154_VALUE_Availability_of_scientists_and_engineers,1-7(best) GCI_155_VALUE_PCT_patents,_applications/million_pop.* (a nagyobb jobb) GCI_156_VALUE_12th_pillar:_Innovation (a nagyobb jobb) GCI_158_VALUE_Global_Competitiveness_Index (a nagyobb jobb) WB_WDI_223_GDP_per_capita,PPP(constant_2011_international_$)_[NY.GDP.PCAP.PP.KD] Overall_Score Rank
Argentina 49.3 53.6 18.3 14.4 14.4 1.6 66.2 14.2 9.8 52.0 13.0 1.5 7.2 47.4 2.0 7.5 74.2 25.5 15.7 53.9 91.94 78.63 2.98 4.82 3.79 4.21 3.73 3.97 4.83 3.67 4.10 2.80 3.64 2.54 3.81 1.36 3.04 3.79 18797.55 38.41 18
Brazil 38.4 42.9 51.4 14.4 14.4 1.0 35.8 24.7 23.9 47.4 20.6 10.2 10.2 41.1 1.8 18.8 52.3 21.7 9.5 85.5 99.35 65.62 2.72 4.53 3.38 4.45 4.31 4.38 4.92 4.10 4.03 3.53 3.80 3.37 3.31 3.23 3.31 4.34 15371.00 31.73 22
Bulgaria 23.3 38.9 17.6 6.4 2.4 17.9 76.1 6.0 5.8 29.7 29.0 0.2 6.1 38.5 0.0 0.0 59.2 44.1 22.3 82.2 93.11 62.70 3.39 3.39 4.02 3.41 3.30 3.35 4.49 3.30 3.51 2.83 3.00 3.15 3.59 5.05 2.94 4.37 16302.22 33.41 21
Chile 30.9 85.7 27.8 12.2 5.4 1.5 81.4 9.4 13.8 50.6 24.4 1.2 14.0 50.2 5.1 8.4 70.0 54.0 4.2 37.6 89.01 74.39 3.69 5.41 4.41 4.46 4.22 4.34 5.09 3.71 4.03 3.06 4.20 3.79 4.63 6.69 3.54 4.60 22226.45 45.24 15
China 30.0 47.5 17.4 15.5 3.2 1.5 22.5 6.2 36.9 50.2 20.5 58.9 8.6 37.4 1.2 22.5 24.1 6.7 13.2 50.6 88.98 26.70 4.03 3.93 4.39 4.35 4.29 4.32 4.42 4.24 4.34 4.29 4.40 4.30 4.41 11.66 3.91 4.89 12758.65 26.35 25
Croatia 32.7 35.5 24.4 22.1 10.7 3.0 49.1 82.4 6.8 30.2 45.8 0.6 29.2 42.3 10.2 4.2 58.3 33.7 21.1 66.5 98.43 61.63 3.23 4.20 4.29 4.14 3.22 3.68 4.67 3.11 4.00 3.07 3.39 2.65 3.93 9.98 3.10 4.13 20136.09 41.16 16
Czech Republic 42.5 42.9 29.9 38.3 27.6 42.0 55.9 70.0 51.0 51.0 49.1 2.0 37.7 51.9 6.2 6.1 64.1 34.1 39.4 89.1 96.55 64.17 3.58 4.27 4.42 4.87 4.14 4.51 5.02 4.60 4.55 3.70 4.00 2.98 4.24 15.83 3.67 4.53 29119.62 59.26 5
Greece 56.5 50.0 31.9 14.4 14.4 24.7 58.2 27.5 30.3 43.0 38.2 2.6 45.6 63.1 9.4 9.9 88.7 48.7 25.2 55.9 107.86 113.98 3.00 3.88 3.82 3.83 3.55 3.69 4.84 3.30 3.74 2.62 3.06 2.56 5.38 7.62 3.18 4.04 23989.14 49.10 13
Hungary 36.6 37.9 34.2 26.4 13.9 21.3 68.3 36.1 39.7 52.7 61.1 1.1 21.5 51.7 9.8 9.1 59.0 39.5 31.3 100.0 101.62 59.63 3.29 4.29 4.31 3.91 3.63 3.77 4.68 3.01 5.08 2.86 4.27 3.18 4.24 24.97 3.50 4.28 24016.30 49.10 12
India 51.9 50.5 13.1 14.4 14.4 0.8 31.3 4.0 4.2 45.6 13.1 7.8 1.3 44.7 0.0 5.0 23.1 39.0 1.7 39.0 68.51 24.77 4.16 4.43 4.16 4.21 3.94 4.08 3.86 4.02 4.01 3.78 3.87 3.55 4.36 1.54 3.53 4.21 5389.90 11.68 29
Indonesia 22.1 25.0 3.8 2.8 0.3 0.5 78.2 83.3 29.9 65.3 24.3 0.1 0.1 37.2 0.0 0.0 27.0 14.0 1.2 36.1 82.54 31.51 4.46 4.61 4.65 4.44 4.66 4.55 4.53 4.76 4.26 4.03 4.55 4.22 4.62 0.07 3.93 4.57 10003.09 20.88 27
Iran 43.3 43.4 14.6 21.5 7.5 0.5 26.7 8.6 2.8 49.3 6.4 5.4 14.1 42.9 0.6 4.2 48.4 34.6 9.7 51.1 86.28 55.16 3.01 3.75 3.49 3.86 3.03 3.44 4.17 3.49 4.15 2.72 3.18 3.24 4.35 0.07 3.13 4.03 16450.72 33.53 20
Italy 33.2 35.7 37.5 37.6 30.9 18.5 63.0 55.4 26.6 47.8 49.9 14.0 45.8 75.2 18.9 17.2 63.4 27.9 23.8 46.9 100.66 62.47 3.74 5.08 4.26 4.82 3.19 4.00 4.78 4.26 4.50 3.62 3.73 2.65 4.78 53.84 3.73 4.42 33945.84 68.69 2
Korea, Rep. (South) 31.8 92.9 39.0 37.2 30.3 9.2 39.2 6.5 11.8 64.2 76.9 11.1 44.1 55.5 12.6 21.0 100.0 75.6 71.6 47.6 97.20 98.38 3.62 4.21 4.69 4.67 4.22 4.44 5.38 4.70 4.98 4.50 4.62 4.14 4.42 201.52 4.83 4.96 33425.69 68.25 3
Malaysia 72.1 91.4 49.7 31.7 12.9 30.2 44.8 14.7 15.3 81.2 2.7 2.2 14.9 41.5 1.5 4.2 36.8 34.0 21.8 50.6 67.24 35.97 5.26 5.13 5.25 5.44 5.35 5.40 4.80 5.19 5.21 4.93 5.33 5.18 5.22 12.62 4.67 5.16 24195.90 49.16 11
Mexico 42.8 50.0 30.8 14.2 5.4 1.6 61.2 25.1 24.1 51.9 13.4 2.3 4.0 42.0 0.7 7.5 27.5 32.4 5.4 37.2 85.68 28.99 2.81 4.24 3.37 4.33 3.95 4.14 3.99 3.72 3.94 3.09 3.97 3.40 3.95 1.83 3.31 4.27 16459.06 33.59 19
Poland 45.0 53.6 34.7 28.9 14.9 4.9 44.5 13.0 15.3 27.1 24.7 4.5 22.9 41.1 2.7 9.9 72.9 44.4 22.4 79.4 97.66 73.19 3.57 4.00 4.20 4.81 3.97 4.39 5.04 3.76 3.88 2.83 3.50 3.24 4.17 7.15 3.26 4.48 24346.21 49.45 10
Portugal 44.6 53.6 41.4 59.4 38.9 16.8 73.4 30.5 48.5 55.6 38.5 2.8 52.7 63.8 18.6 14.1 65.4 32.3 60.9 55.4 112.85 68.86 4.27 5.92 5.12 5.11 4.18 4.64 5.37 4.29 5.38 3.57 4.68 3.77 5.24 13.01 4.08 4.54 26023.67 53.30 8
Romania 48.5 57.1 19.6 14.0 4.7 9.1 43.9 12.7 14.8 45.1 30.4 1.4 13.0 34.6 0.0 0.0 51.2 27.9 10.2 64.7 95.01 51.60 3.83 4.21 4.40 4.17 3.56 3.86 4.63 3.75 3.98 3.13 3.59 3.41 4.03 2.24 3.28 4.30 19666.95 40.00 17
Russia 43.2 57.1 27.5 13.5 5.9 9.4 50.8 8.8 10.4 32.5 5.1 2.1 3.0 28.9 1.2 15.7 74.9 100.0 42.8 82.4 95.30 76.14 3.48 3.75 4.17 4.34 3.84 4.09 4.96 3.77 3.96 3.16 3.63 3.34 4.06 7.13 3.29 4.37 24880.08 50.51 9
Saudi Arabia 100.0 90.0 63.7 14.4 14.4 16.9 87.5 88.9 7.7 49.3 15.8 0.6 4.0 48.5 8.4 18.5 42.8 27.9 16.5 33.5 116.17 50.94 4.11 4.16 4.23 4.08 4.09 4.08 4.64 3.98 4.17 3.59 4.20 4.57 4.35 6.65 3.80 5.06 49958.44 100.00 1
Serbia 59.6 56.8 25.4 45.3 12.6 17.8 56.6 57.2 6.1 49.3 0.1 0.7 17.1 43.5 7.0 5.0 50.0 32.7 21.0 61.0 91.71 52.38 3.06 3.55 3.80 3.52 3.09 3.30 4.25 2.97 3.74 2.45 3.24 2.88 3.88 2.31 2.89 3.90 13112.82 27.35 24
Slovakia 29.4 32.1 27.0 24.5 15.0 19.1 72.1 22.5 6.2 37.7 32.7 0.4 16.4 44.3 0.0 0.0 54.6 35.1 38.2 89.8 93.88 55.11 2.76 3.78 4.02 4.48 3.83 4.16 4.65 3.54 3.86 3.05 3.36 2.93 3.96 9.20 3.18 4.15 27237.62 55.06 7
Slovenia 47.0 46.4 37.9 27.5 21.1 9.1 63.6 78.4 45.5 42.3 56.5 0.6 60.1 53.3 21.8 4.2 84.4 46.9 57.9 70.9 97.57 86.02 4.07 4.37 4.91 4.43 3.70 4.07 5.33 3.71 4.74 3.08 3.96 2.98 3.90 62.98 3.64 4.22 28459.91 58.19 6
South Africa 27.7 30.6 13.6 19.5 5.6 36.6 70.9 30.5 26.5 53.2 50.3 1.9 7.4 61.4 3.2 15.2 51.8 11.3 5.2 51.8 101.89 19.20 2.22 5.16 3.11 4.49 4.91 4.70 4.04 4.33 4.72 3.41 4.49 2.96 3.54 6.48 3.64 4.35 12462.03 25.96 26
Spain 46.9 46.4 52.3 38.9 32.0 15.9 63.8 62.6 63.5 49.8 43.0 10.1 43.3 64.4 12.2 18.2 82.0 59.0 38.3 67.2 130.81 84.57 3.44 5.93 4.52 4.69 3.72 4.20 5.23 3.85 4.52 3.31 3.77 3.08 5.19 39.59 3.69 4.55 31193.33 63.64 4
Thailand 34.8 36.4 11.8 5.5 1.4 4.0 61.3 45.5 59.0 57.3 37.5 1.5 4.6 50.5 0.0 0.0 52.2 23.9 4.6 50.5 86.98 51.23 3.45 4.13 4.01 4.17 4.41 4.29 4.58 3.75 3.91 3.24 3.95 2.94 4.26 1.23 3.28 4.66 14853.46 30.61 23
Turkey 34.8 36.4 13.4 44.0 15.8 4.0 27.8 12.7 10.1 57.7 15.3 5.7 15.2 44.8 0.6 4.2 60.2 29.2 11.7 47.6 86.11 69.39 3.42 3.79 3.84 4.36 3.81 4.09 4.69 3.70 3.87 2.95 3.69 4.16 4.22 6.83 3.42 4.46 22401.88 45.37 14
Ukraine 78.3 67.9 10.5 4.7 0.9 7.5 60.5 12.9 8.8 41.9 0.3 0.4 1.6 23.4 0.0 0.0 78.6 71.0 17.1 50.4 97.77 79.70 3.67 3.89 4.16 3.91 3.78 3.84 4.93 3.64 3.77 3.13 3.50 2.87 4.33 3.19 3.16 4.14 8243.47 17.70 28

Comparing partial rankings to the adequate part of the original ranking

The final step is to compare the results of the partial rankings to the corresponding part of the original U21 ranking. The results of the Spearman’s rank correlation show a strong positive relationship between the two ranking.

cor(B$Rank,U21_rank[rownames(B),],method="spearman")
## [1] 0.7801453
cor.test(B$Rank,U21_rank[rownames(B),],method="spearman")
## 
##  Spearman's rank correlation rho
## 
## data:  B$Rank and U21_rank[rownames(B), ]
## S = 892.61, p-value = 6.038e-07
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.7801453

Venn diagram of U21’s League C and the League C of the extended database

An interesting question is how the League C of the U21 and the League C of the extended database (U21 + GCI + GDP) are overlap. In order to answer this question, one can make a Venn diagram of the two leagues to detect overlaps. The first step before plotting the Venn diagrams (one for indicators and one for countries), is to calculate the lower league bi-cluster of the U21 database.

rres_U21 <- iBBiG(binaryMatrix=binarize(1-mtx_u21,threshold = 0.50),nModules = 1,alpha=0.08,pop_size = 100,mutation = 0.08,stagnation = 50,selection_pressure = 1.2,max_sp = 15,success_ratio = 0.8)
## Module:  1 ... done
T<-biclust::bicluster(orig_mtx,rres,number = 1)
T_U21<-biclust::bicluster(orig_mtx_u21,rres_U21,number = 1)
League_C<-T[[1]]
League_C_U21<-T_U21[[1]]

Fig.12 shows the Venn diagram of the indicators in the two different lower leagues. The green circle contains those indicators that are in the U21’s lower league (League C) while in the red circle the extended database’s lower league’s indicators can be found. 19 indicators are the same in the two lower leagues.

draw.pairwise.venn(area1=nrow(as.matrix(colnames(League_C))),area2=nrow(as.matrix(colnames(League_C_U21))),cross.area=nrow(as.matrix(intersect(colnames(League_C),colnames(League_C_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of indicators on League Cs")
**Fig. 12** Venn diagram of the indicators in the lower leagues

Fig. 12 Venn diagram of the indicators in the lower leagues

## (polygon[GRID.polygon.33], polygon[GRID.polygon.34], polygon[GRID.polygon.35], polygon[GRID.polygon.36], text[GRID.text.37], text[GRID.text.38], text[GRID.text.39], text[GRID.text.40])

One can draw a Venn diagram for the countries in the two lower leagues. On Fig. 13 the green circle contains those countries that are in the U21’s lower league while in the brown circle the extended database’s lower league’s countries can be found. An interesting finding is that all of the countries in the extended database (29) are part of the U21 countries.

draw.pairwise.venn(area1=nrow(as.matrix(rownames(League_C))),area2=nrow(as.matrix(rownames(League_C_U21))),cross.area=nrow(as.matrix(intersect(rownames(League_C),rownames(League_C_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of countries on League Cs")
**Fig. 13** Venn diagram of the countries in the lower leagues

Fig. 13 Venn diagram of the countries in the lower leagues

## (polygon[GRID.polygon.41], polygon[GRID.polygon.42], polygon[GRID.polygon.43], polygon[GRID.polygon.44], text[GRID.text.45], text[GRID.text.46], lines[GRID.lines.47], text[GRID.text.48], text[GRID.text.49])

Bi-clustering by correlations - Applying BiCARE algorithm

With the BicARE method the middle league(s) can be specified. In order to use the BiCARE method, the first step is to convert the BicARE object to a Biclust object.

bicare2biclust <- function(x){
    if(class(x)=="Biclust"){
        return(x)
    } else if(class(x)=="biclustering"){
        Parameters <- list(numberofbicluster=x$param[1,2],residuthreshold=x$param[2,2],genesinitialprobability=x$param[3,2],samplesinitialprobability=x$param[4,2],numberofiterations=x$param[5,2],date=x$param[6,2])
        RowxNumber <- t(x$bicRow==1)
        NumberxCol <- x$bicCol==1
        Number <- as.numeric(dim(RowxNumber)[2])
        info <- list()
        return(new("Biclust",Parameters=Parameters,RowxNumber=RowxNumber,NumberxCol=NumberxCol,Number=Number,info=info))
    }
}

In the next step the BicARE algorithm determines the number of the bi-clusters.

BICARE_res <- FLOC(Data=mtx,k=2,pGene=1.0,pSample=1.0,r=NULL,N=8,M=6,t=500,blocGene=NULL,blocSample=NULL)
bres <- bicare2biclust(BICARE_res)
summary(bres)
## 
## An object of class Biclust 
## 
## call:
##  NULL
## 
## Number of Clusters found:  2 
## 
## Cluster sizes:
##                    BC 1 BC 2
## Number of Rows:      35   27
## Number of Columns:    6    6
bres@Parameters$residuthreshold
## [1] "0.00329199454357613"

The results above show that the BicARE algorithm found 2 bi-clusters. In the first bi-cluster there are 35 rows (countries) and 6 columns (indicators), in the second bi-cluster there are 27 rows (countries) and 6 columns (indicators). The next step is to calculate F-tests to determine which bi-cluster is significant.

RObs.FStat <- NULL
for (i in c(1:bres@Number)){
  RObs.FStat[[i]] <- computeObservedFstat(x=mtx,bicResult=bres,number=i)
}
kable(RObs.FStat,caption = "**Table 7** The results of row and column effects of the middle league for two bi-clusters")
Table 7 The results of row and column effects of the middle league for two bi-clusters
Fstat PValue
Row Effect 110.500760 0.0000000
Column Effect 5.070991 0.0002332
Tukey test 7.295602 0.0076165
Fstat PValue
Row Effect 104.19036 0.0000000
Column Effect 23.32308 0.0000000
Tukey test 2.68220 0.1039125

In Table 7 the results of the F-tests can be seen. Although both bi-clusters are significant, in the following only the first bi-cluster is considered because based on the U21 data only one bi-cluster was found and can be compared with the extended database’s results. The first bi-cluster will be considered as the middle league (League B).

Calculating middle league bi-cluster

The next step is to identify the middle league bi-cluster.

BICARE_res <- FLOC(Data=mtx,k=1,pGene=1.0,pSample=1.0,r=NULL,N=8,M=6,t=500,blocGene=NULL,blocSample=NULL)
bres <- bicare2biclust(BICARE_res)
summary(bres)
## 
## An object of class Biclust 
## 
## call:
##  NULL
## 
## There was one cluster found with
##   27 Rows and  6 columns
bres@Parameters$residuthreshold
## [1] "0.00329199454357613"

The results of the BicARE algorithm can be seen above. The algorithm found one bi-cluster in which there are 27 rows (countries) and 6 columns (indicators). The following step is to calculate the F-tests to determine whether the bi-cluster is significant or not.

Calculating F-tests of the middle league bi-cluster

In Table 8 the results of the row and column effects (F-tests) can be read. Both the row and column effects are significant, so the middle league bi-cluster is significant.

RObs.FStat <- NULL
for (i in c(1:bres@Number)){
  RObs.FStat[[i]] <- computeObservedFstat(x=mtx,bicResult=bres,number=i)
}
kable(RObs.FStat,caption = "**Table 8** The results of row and column effects of the middle league")
Table 8 The results of row and column effects of the middle league
Fstat PValue
Row Effect 125.468360 0.0000000
Column Effect 6.115956 0.0000403
Tukey test 9.394509 0.0026510

To see the differences between those countries that are included in the middle league and those that are not in the middle league, one can plot the means, medians, variances, and median absolute deviations (MAD) for rows (countries) (see Fig. 14). On Fig. 14 the red line indicates those countries that are included in the middle league, while the black line shows the remaining countries. Fig. 14 shows that in the case of the countries in the middle league the variances differ the most.

exploreBic(dset=mtx,bres=bres,mname='biclust',pfor='all',gby='genes',bnum=1)
**Fig. 14** Mean, median, variance and MAD for middle league countries

Fig. 14 Mean, median, variance and MAD for middle league countries

One can do the same for the columns (indicators). Fig. 15 shows the differences between the means, medians, variances, and median absolute deviations (MAD) for the indicators. The red line indicates those indicators that are in the middle league, while the black line shows the remaining indicators.

exploreBic(dset=mtx,bres=bres,mname='biclust',pfor='all',gby='conditions',bnum=1)
**Fig. 15** Mean, median, variance and MAD for middle league indicators

Fig. 15 Mean, median, variance and MAD for middle league indicators

Heat maps of the middle league

Fig. 16 depicts the heat map of the middle league. The middle league contains 27 countries and 6 indicators. The red cells mean higher values in the case of indicators, while blue cells symbol lower values.

drawHeatmap(x=mtx,bicResult=bres,number=1,paleta=bluered(100),beamercolor = TRUE) 
**Fig. 16** Heat map of the middle league

Fig. 16 Heat map of the middle league

Fig. 17 shows the heat map of the results of BicARE on normalized data.The middle league can be seen in the upper left corner of Fig. 17, which is enlarged on Fig.16.

drawHeatmap(x=mtx,bicResult=bres,local=FALSE,number=1,paleta=bluered(100),beamercolor = TRUE) 
**Fig. 17** Heat map of the output after applying BicARE on normalized data

Fig. 17 Heat map of the output after applying BicARE on normalized data

Checking stability of the middle league bi-cluster

The next step is to check the stability of the middle league bi-cluster. The results of the bootstrap can be seen below.

Bootstrap <- diagnoseColRow(x=mtx,bicResult=bres,number=1,
  nResamplings=100,replace=TRUE)
Bootstrap
## $bootstrapFstats
##         fval.row   fval.col
##   [1,] 1.2078600 0.61240007
##   [2,] 1.5806960 0.85319402
##   [3,] 0.9273756 1.36239109
##   [4,] 0.6872762 1.79701157
##   [5,] 0.7660947 1.07387646
##   [6,] 1.1139033 0.26647840
##   [7,] 0.8795790 1.69844993
##   [8,] 0.9123604 1.66501644
##   [9,] 2.3435876 0.49093603
##  [10,] 0.7157546 0.31756348
##  [11,] 0.5568714 0.46800481
##  [12,] 0.6603036 1.03764537
##  [13,] 0.9614088 1.05868740
##  [14,] 1.1161979 1.27977908
##  [15,] 0.8939627 1.27184215
##  [16,] 0.8575280 0.75544638
##  [17,] 0.7414932 2.09229150
##  [18,] 1.1472397 2.06786233
##  [19,] 0.6297470 0.53184250
##  [20,] 0.7956746 1.48659577
##  [21,] 1.8246519 4.00042634
##  [22,] 0.7848388 0.36980379
##  [23,] 0.8926824 0.57060718
##  [24,] 0.7910152 0.45822001
##  [25,] 0.6405035 1.92382946
##  [26,] 0.9168117 1.30711295
##  [27,] 2.1284440 0.50411194
##  [28,] 0.6608382 1.28195683
##  [29,] 0.6708781 0.94941481
##  [30,] 0.9400408 1.41871798
##  [31,] 1.1387900 1.42750599
##  [32,] 0.6048057 0.98925913
##  [33,] 1.0817870 1.50933300
##  [34,] 0.8913641 0.47729945
##  [35,] 0.9048450 0.82701836
##  [36,] 0.7274354 1.23834031
##  [37,] 0.8536817 0.94550524
##  [38,] 0.9972651 2.12438988
##  [39,] 0.7917958 0.64773618
##  [40,] 0.9944008 0.71253015
##  [41,] 0.7635362 0.94899826
##  [42,] 0.8574021 0.67111886
##  [43,] 0.9974994 0.35971525
##  [44,] 0.7574384 0.39283201
##  [45,] 1.1448646 1.76582684
##  [46,] 1.9931620 2.15707081
##  [47,] 0.8269813 0.94746880
##  [48,] 1.1662655 0.89833189
##  [49,] 0.8304346 1.60601105
##  [50,] 0.5241232 1.78577964
##  [51,] 0.8979847 1.66020154
##  [52,] 0.6964299 0.54443764
##  [53,] 0.6960671 0.85740038
##  [54,] 0.8195451 1.17689029
##  [55,] 0.9794541 0.31672513
##  [56,] 0.8682385 3.50394981
##  [57,] 0.8277749 0.55470189
##  [58,] 1.0689082 1.91161123
##  [59,] 0.8997694 2.21317099
##  [60,] 1.0505329 0.28597662
##  [61,] 0.7615445 0.94014020
##  [62,] 1.1851639 0.99557101
##  [63,] 1.1819092 2.13056893
##  [64,] 0.5472015 1.44855670
##  [65,] 0.8222250 0.82266190
##  [66,] 1.2966959 0.98496003
##  [67,] 0.8420572 1.02265808
##  [68,] 1.0241865 0.22234867
##  [69,] 1.1494583 3.20653343
##  [70,] 1.1477168 0.79660900
##  [71,] 0.9805434 1.11897143
##  [72,] 1.3189989 1.74830315
##  [73,] 1.0974138 1.63691935
##  [74,] 0.9473180 0.35818774
##  [75,] 1.7656438 0.78717292
##  [76,] 1.0617085 0.07751164
##  [77,] 1.2535956 0.74280781
##  [78,] 0.8902942 0.97886108
##  [79,] 1.4919405 1.29303458
##  [80,] 0.8876010 3.00128630
##  [81,] 0.8065096 1.12045311
##  [82,] 0.6580799 0.50252792
##  [83,] 1.5335705 0.86472714
##  [84,] 0.6407898 1.14873848
##  [85,] 1.2930996 1.80945642
##  [86,] 1.4546359 0.54653723
##  [87,] 1.1740167 0.91574036
##  [88,] 1.4850134 1.71722679
##  [89,] 0.8171080 0.69132360
##  [90,] 1.0804226 1.00283869
##  [91,] 0.5552350 0.53821270
##  [92,] 0.8880356 0.30116660
##  [93,] 0.7923035 1.01005978
##  [94,] 0.9249327 1.35695494
##  [95,] 1.8142046 0.54950519
##  [96,] 1.1446460 1.89536025
##  [97,] 1.0660994 2.33089157
##  [98,] 1.0268796 0.81621546
##  [99,] 0.8612494 0.68431171
## [100,] 0.7424431 1.76134082
## 
## $observedFstatRow
## [1] 125.4684
## 
## $observedFstatCol
## [1] 6.115956
## 
## $bootstrapPvalueRow
## [1] 0
## 
## $bootstrapPvalueCol
## [1] 0

Since the bootstrapPvalueRow and the bootstrapPvalueCol are lower than 0.01, the bi-cluster is stable.

Calculating partial rankings

The next step is to calculate partial rankings based on the indicators and countries in the middle league. The calculation of each score of each indicator of the countries are done according to the method used in the original U21 ranking. The original weights of U21?s indicators are used, and the total scores for the countries are calculated using the selected indicators in the given bi-cluster. Table 9 shows the result of partial ranking in the case of the middle league.

C<-biclust::bicluster(orig_mtx,bres,number=1)
B<-as.data.frame(C[[1]])
selectedweight<-weights[,colnames(B)]
B$Overall_Score<-rowSums(B*selectedweight)*100/max(rowSums(B*selectedweight))
B$Rank<-rank(-B$Overall_Score)
kable(B,caption = "**Table 9** League B by BicARE",digits = 2)
Table 9 League B by BicARE
GCI_72_VALUE_Availability_of_research_and_training_services,1-7(best) GCI_73_VALUE_Extent_of_staff_training,1-7(best) GCI_74_VALUE_C._On-the-job_training (a nagyobb jobb) GCI_149_VALUE_Capacity_for_innovation,1-7(best) GCI_152_VALUE_University-industry_collaboration_in_R&D,1-7(best) GCI_156_VALUE_12th_pillar:_Innovation (a nagyobb jobb) Overall_Score Rank
Argentina 4.21 3.73 3.97 3.67 3.64 3.04 62.42 21
Australia 5.21 4.52 4.87 4.61 4.84 4.41 79.85 11
Austria 5.93 4.82 5.37 4.96 4.68 4.82 85.78 8
Belgium 6.00 5.11 5.56 5.16 5.58 4.89 90.60 4
Brazil 4.45 4.31 4.38 4.10 3.80 3.31 68.29 13
Bulgaria 3.41 3.30 3.35 3.30 3.00 2.94 54.15 26
Canada 5.29 4.70 4.99 4.63 4.90 4.54 81.50 9
Croatia 4.14 3.22 3.68 3.11 3.39 3.10 57.91 24
Germany 6.03 5.02 5.52 5.60 5.34 5.47 92.48 2
Greece 3.83 3.55 3.69 3.30 3.06 3.18 57.79 25
Hong Kong 5.42 4.63 5.02 4.50 4.59 4.38 80.01 10
India 4.21 3.94 4.08 4.02 3.87 3.53 66.37 15
Indonesia 4.44 4.66 4.55 4.76 4.55 3.93 75.41 12
Mexico 4.33 3.95 4.14 3.72 3.97 3.31 65.73 17
Netherlands 6.13 5.03 5.58 5.23 5.38 5.25 91.46 3
Norway 5.52 5.16 5.34 5.02 5.02 4.85 86.70 7
Romania 4.17 3.56 3.86 3.75 3.59 3.28 62.31 22
Russia 4.34 3.84 4.09 3.77 3.63 3.29 64.39 19
Serbia 3.52 3.09 3.30 2.97 3.24 2.89 53.33 27
Singapore 5.46 5.25 5.36 4.99 5.58 5.18 89.24 6
Slovakia 4.48 3.83 4.16 3.54 3.36 3.18 63.24 20
Slovenia 4.43 3.70 4.07 3.71 3.96 3.64 65.92 16
Spain 4.69 3.72 4.20 3.85 3.77 3.69 67.07 14
Sweden 5.42 5.10 5.26 5.50 5.33 5.37 89.70 5
Switzerland 6.50 5.69 6.09 5.89 5.79 5.70 100.00 1
Turkey 4.36 3.81 4.09 3.70 3.69 3.42 64.67 18
Ukraine 3.91 3.78 3.84 3.64 3.50 3.16 61.22 23

Comparing partial rankings to the adequate part of the original ranking

The final step is to compare the results of the partial rankings to the corresponding part of the original U21 ranking. The results of the Spearman?s rank correlation show a moderate positive relationship between the two ranking.

cor(B$Rank,U21_rank[rownames(B),],method="spearman")
## [1] 0.6941392
cor.test(B$Rank,U21_rank[rownames(B),],method="spearman")
## 
##  Spearman's rank correlation rho
## 
## data:  B$Rank and U21_rank[rownames(B), ]
## S = 1002, p-value = 9.038e-05
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.6941392

Venn diagram of U21’s League B and the League B of the extended database

An interesting question is how the League B of the U21 and the League B of the extended database (U21 + GCI + GDP) are overlap. In order to answer this question, one can make a Venn diagram of the two leagues to detect overlaps. The first step before plotting the Venn diagrams(one for indicators and one for countries), is to calculate the middle league bi-cluster of the U21 database.

BICARE_res_U21 <- FLOC(Data=as.matrix(ALL),k=1,pGene=1,pSample=1,r=1e-16,N=17,M=6,t=10000,blocGene=NULL,blocSample=NULL)
bres_U21 <- bicare2biclust(BICARE_res_U21)

T<-biclust::bicluster(orig_mtx,bres,number = 1)
T_U21<-biclust::bicluster(orig_mtx_u21,bres_U21,number = 1)
League_B<-T[[1]]
League_B_U21<-T_U21[[1]]

Fig.18 shows the Venn diagram of the indicators in the two different top leagues. The green circle contains those indicators that are in the U21’s middle league (League B) while in the red circle the extended database’s middle league’s indicators can be found. There is no common indicator in the two middle leagues.

draw.pairwise.venn(area1=nrow(as.matrix(colnames(League_B))),area2=nrow(as.matrix(colnames(League_B_U21))),cross.area=nrow(as.matrix(intersect(colnames(League_B),colnames(League_B_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of indicators on League Bs")
**Fig. 18** Venn diagram of the indicators in the middle leagues

Fig. 18 Venn diagram of the indicators in the middle leagues

## (polygon[GRID.polygon.52], polygon[GRID.polygon.53], polygon[GRID.polygon.54], polygon[GRID.polygon.55], text[GRID.text.56], text[GRID.text.57], text[GRID.text.58], text[GRID.text.59])

One can draw a Venn diagram for the countries in the two middle leagues. On Fig. 19 the green circle contains those countries that are in the U21’s middle league while in the red circle the extended database’s middle league’s countries can be found. 8 countries are the same in the two middle leagues.

draw.pairwise.venn(area1=nrow(as.matrix(rownames(League_B))),area2=nrow(as.matrix(rownames(League_B_U21))),cross.area=nrow(as.matrix(intersect(rownames(League_B),rownames(League_B_U21)))),fill=c("red","green"),category=c("Extended","U21"),main="Venn Diagram of countries on League Bs")
**Fig. 19** Venn diagram of the countries in the middle leagues

Fig. 19 Venn diagram of the countries in the middle leagues

## (polygon[GRID.polygon.60], polygon[GRID.polygon.61], polygon[GRID.polygon.62], polygon[GRID.polygon.63], text[GRID.text.64], text[GRID.text.65], text[GRID.text.66], text[GRID.text.67], text[GRID.text.68])

Specifying overlaps

Bi-clusters might (or might not) overlap. Analyzing the overlaps can give a subtler picture of countries and indicators.

Venn diagram of indicators

Fig. 20 shows the Venn diagram of the extended database’s (U21 + GCI + GDP) indicators. The red circle contains those indicators that are in the upper league (League A), in the blue circle those indicators can be found that are in the lower league (League C). The green circle indicates the middle league’s (League B) indicators.

T<-biclust::bicluster(orig_mtx,res,number = 1)
League_A<-T[[1]]
R<-biclust::bicluster(orig_mtx,rres,number = 1)
League_C<-R[[1]]
B<-biclust::bicluster(orig_mtx,bres,number = 1)
League_B<-B[[1]]
draw.triple.venn(area1=nrow(as.matrix(colnames(League_A))),area2=nrow(as.matrix(colnames(League_B))),area3=nrow(as.matrix(colnames(League_C))),n12=nrow(as.matrix(intersect(colnames(League_A),colnames(League_B)))),n13=nrow(as.matrix(intersect(colnames(League_A),colnames(League_C)))),n23=nrow(as.matrix(intersect(colnames(League_B),colnames(League_C)))),n123=nrow(as.matrix(intersect(intersect(colnames(League_A),colnames(League_B)),colnames(League_C)))),fill=c("red","green","blue"),category=c("League A","League B","League C"),main="Venn Diagram of indicators of the extended database")
**Fig. 20** Venn diagram of the indicators

Fig. 20 Venn diagram of the indicators

## (polygon[GRID.polygon.69], polygon[GRID.polygon.70], polygon[GRID.polygon.71], polygon[GRID.polygon.72], polygon[GRID.polygon.73], polygon[GRID.polygon.74], text[GRID.text.75], text[GRID.text.76], text[GRID.text.77], text[GRID.text.78], text[GRID.text.79], text[GRID.text.80], text[GRID.text.81])

One interesting finding is, that all of the indicators in the middle league are part of the lower league’s indicators.

Venn diagram of countries

Fig. 21 shows the Venn diagram of the extended database’s (U21 + GCI +GDP) countries. The red circle contains those countries that are in the upper league (League A), in the the blue circle those countries can be found that are in the lower league (League C). The green circle indicates the middle league’s (League B) countries.

draw.triple.venn(area1=nrow(as.matrix(rownames(League_A))),area2=nrow(as.matrix(rownames(League_B))),area3=nrow(as.matrix(rownames(League_C))),n12=nrow(as.matrix(intersect(rownames(League_A),rownames(League_B)))),n13=nrow(as.matrix(intersect(rownames(League_A),rownames(League_C)))),n23=nrow(as.matrix(intersect(rownames(League_B),rownames(League_C)))),n123=nrow(as.matrix(intersect(intersect(rownames(League_A),rownames(League_B)),rownames(League_C)))),fill=c("red","green","blue"),category=c("League A","League B","League C"),main="Venn Diagram of countries of the extended database")
**Fig. 21** Venn diagram of the countries

Fig. 21 Venn diagram of the countries

## (polygon[GRID.polygon.82], polygon[GRID.polygon.83], polygon[GRID.polygon.84], polygon[GRID.polygon.85], polygon[GRID.polygon.86], polygon[GRID.polygon.87], text[GRID.text.88], text[GRID.text.89], text[GRID.text.90], text[GRID.text.91], text[GRID.text.92], text[GRID.text.93], text[GRID.text.94], text[GRID.text.95], text[GRID.text.96], text[GRID.text.97])

If the extended database (U21 + GCI + GDP) is used there are no countries which belong to all of the three leagues at the same time.

Summing up the conclusions

The above proposed bi-clustering methods can help to identify which countries can be compared based on which indicators in higher education system rankings. With the iBBiG method the upper and lower league(s) (League(s) A and League(s) C) can be determined and the BicARE method can specify the middle league(s) (League(s) B). In this case an extended database was used during the bi-clustering. The exentended database contains not just indicators of the U21 ranking, but indicators of the Global Competitive Index (GCI) and an indicator from the World Bank (WB/GDP). The results show that using this extended database do not change significantly the countries and the indicators in the upper and lower league compared to the results of the leagues of the U21 database. On the other hand, in the case of the middle league there are differences between the results of the extended database and the U21 database.